Inverse Lithography Technology (ILT) Under Chip Manufacture Context
AMEDAC.CAS.
Abstract
As semiconductor process nodes shrink to 3 nm and beyond, traditional optical proximity correction (OPC) and resolution enhancement technologies (RETs) can no longer meet the high patterning precision needs of advanced chip manufacturing due to the sub-wavelength lithography limits. Inverse lithography technology (ILT), a key part of computational lithography, has become a critical solution for these issues. From an EDA industry perspective, this review provides an original and systematic summary of ILT’s development and applications, which helps integrate the scattered research into a clear framework for both academic and industrial use. Compared with traditional OPC, the latest ILT has three main advantages: (1) better patterning accuracy, as a result of the precise optical models that fix complex optical issues (like diffraction and interference) in advanced lithography systems; (2) a wider process window, as it optimizes mask designs by working backwards from the target wafer patterns, making lithography more stable against process changes; and (3) stronger adaptability to new lithography scenarios, such as High-NA EUV and extended DUV nodes. This review first explains ILT’s working principles (the basic concepts, mathematical formulae, and main methods like level-set and pixelated approaches) and its development history, highlighting key events that boosted its progress. It then analyzes ILT’s current application status in the industry (such as hotspot fixing, full-chip trials, and EUV-era use) and its main bottlenecks: a high computational complexity leading to long runtime, difficulties in mask manufacturing, challenges in model calibration, and a conservative market that slows large-scale adoption. Finally, it discusses promising future directions, including hybrid ILT-OPC-SMO strategies, improving model accuracy, AI/ML-driven design, GPU acceleration, multi-beam mask writer improvements, and open-source data to solve data shortage problems. By combining the latest research and industry practices, this review fills the gap of comprehensive ILT summaries that cover the principles, progress, applications, and prospects. It helps readers fully understand ILT’s technical landscape and offers practical insights for solving the key challenges, thus promoting ILT’s industrial use in advanced chip manufacturing.

