Re: The End of the Carrier Age?
To counter a modern super carrier, the ASBM will have to loft a much larger warhead than they use today. A near miss will not do it. The only hope for as ASBM to have a major effect would be to use a fuel-air explosive. This is something the PLAN is researching today
China has produced air fuel explosive since 1990 They even offer it for export
Type
Cluster bomb, multi-purpose.
Development
These fuel/air explosive bombs have been developed by the China North Industries Corporation (NORINCO) for use by the People's Liberation Army Air Force (PLAAF). In 1990 it was reported that two sizes of the bombs were being developed: a 250 kg bomb that carries two Fuel/Air Explosive (FAE) bomblets, and a 500 kg bomb that carries three FAE bomblets. A model of the 250 kg version was on display at the 1991 Paris Air Show. In 1997 a single bomb version was advertised for export, with a weight of 310 kg and carrying three FAE bomblets. It is believed that development trials have been completed and the weapon has entered service with the PLAAF
Another thing TLAM will face one of the most formidable air defense in the world . Most strategic weapon are protected by multiple layer of defense from short range missile, HEAD 35 mm skyguard analogue all the way to bistatic radar and Bodyguard laser, smoke, chaff launcher . It is not easy to penetrate strategic weapon defense. Here is R Fisher article long time ago 2001 By now they should improve on those system or have a better system deployed
Bluffer has compile excellent Chinese air defense systems titled Fortress China
NTEGRATED AIR DEFENSES
The PLA is now building up perhaps one of the most formidable air defense networks in the world. Especially since the Gulf War and Kosovo, the creation of an integrated air defense network has become a high PLAAF priority. One recent reports notes the PLA Air Force is building 68 new radar sites near Taiwan. [107] A robust air defense is viewed as a critical component for supporting offensive forces. [108] There is a heavy emphasis on defeating U.S. PGMs and stealth platforms. The last decade has also seen a heavy investment in range of new radar systems, to include counter-stealth radar. New SAMs from Russia are being integrated into PLAAF and Army air defense units while new indigenous SAMs are making their appearance. A likely hallmark of this investment is to integrate space, airborne and radar sensors to be able to defend the sensor network while directing missiles and guns. For the future, it is possible that the PLAAF will press to control China’s space defense and missile defense forces.
New radar. The PLA has been developing Over-the-Horizon (OTH) radar since 1967 but it is not clear that it has developed this technology for extensive use. Early efforts focused on ground-wave OTH with a range of 250km (150mi). Such radar would be most useful for tracking ships. In the 1980s the PLA revealed efforts to build sky-wave OTH, which bounces radar waves off of the upper atmosphere, and has the potential to detect targets out to 3,500km (2,100mi).
The PLA has developed many long-range surveillance and tactical radar. For long-range surveillance the PLA has developed the YLC-4, a 410km (246mi) range 2-D radar, meaning it can only find the height and range of a target. This radar is advertised as having a potential anti-stealth capability. The JY-14 is a 320km (192mi) range 3-D radar that is resistant to clutter and jamming. The YLC-2 is a more transportable 300km (180mi) range 3-D radar that employs a variety of electronic counter-counter measures (ECCM) to survive enemy jamming. The JY-11 is a new 180 km (108mi) range 3-D radar that is accurate enough to supplant weapon guidance radar, allowing them to turn off, thus decreasing their vulnerability to attack by anti-radar missiles. [109]
The PLA’s knowledge of phased array radar was likely increased when it acquired the Russian Almaz S-300PMU long-range anti-aircraft missile system in the early 1990s. The phased array 76N6 CLAM SHELL radar is able to detect targets out to 90km (54mi) and down to 500m altitude. It can track up to 180 targets. Its phased array configuration means that it can focus periodic “points” of radar energy on a target instead of bathing the sky in radar waves. This allows the radar to avoid triggering aircraft radar- warning devices that might result in anti-radar missile (ARM) attacks. [110] The PLA also has purchased the S-300PMU1, which employs the more powerful 96L6 3-D phased array radar that can track 100 targets simultaneously out to 300km (180mi).
The PLA is also developing new phased array radar that allow for electronic beam steering and allow the radar beam to be focused to achieve longer ranges. A new such phased array radar was revealed at the 2000 China International Defense Electronics Exhibition (CIDEX). It is possible that this same phased array radar is also being developed for naval air defense.
The PLA Army is also introducing new radar systems. The YLC-6 is a 180km (108mi) range low-altitude surveillance radar that is said in tests to have detected a U.S. AH-64 APACHE attack helicopter out to 30km. The CLC-3 is a new mast-mounted radar that is useful to detect low-flying objects such as helicopters and cruise missiles. Also known as the AS901, this is a solid-state L-Band radar that can track up to 10 targets at 3,500m altitude, up to 25km, and out to 15km at 100m. [111] The CLC-2 is a new tactical air defense radar mounted on a tank chassis to provide cueing for the new PZG-95 self-propelled missile/gun anti-aircraft tank, which itself carries the short-range CLC-1 defense radar. A new Army phased array radar is the SLC-2, which can detect incoming artillery out to 50km (30mi) to direct counter-battery fire. Counter-stealth radar. To counter the growing U.S. reliance on radar-evading stealth in its platforms and weapons, the PLA is devoting considerable effort to develop counter-stealth radar to diminish this U.S. advantage. One area of particular PLA effort is in the area of metric-wave radar. The PLA uses several metric-wave radar. At the 1998 Zhuhai Air Show the Institute No. 23 of the China Aerospace Corporation marketed its J-231 radar. The radar is advertised as having “high capability of detecting anti-radiation missile, high anti-stealth capability.” [112] The PLA also operates other metric wave radar like the 2D YLC-14 and a larger 3D YLC-9. Many PLAN warships, including the newest LUHAI class use the Type 636 Metric-wave radar. Russia now markets several new and upgraded Metric-wave radar that incorporate solid-state electronics, countermeasures, automatic processing features and modern displays. Russians complain that the PRC has stolen their technology to upgrade Metric-wave radar. [113]
The PLA may also be exploiting a U.S. technology called “passive-coherent” detection reported to have been purchased from a U.S. company. This technology, developed by Lockheed-Martin, is able to detect disturbances in television broadcast signals caused by aircraft. When this data is combined with normal radar data, detection of stealth aircraft is possible. The PLA may also be exploring “Bi-static” radar, in which the transmitter and receiver are separated by some distance, to overcome stealth shaping. [114]
Obscurants, decoys. Smoke, chaff, lasers and decoys figure heavily in PLA defensive operations, especially to counter the U.S. advantage in laser and radar-guided precision-guided munitions (PGMs). To defend against PGMs the PLA uses a unique system called BODYGUARD. It is a wheeled chassis that contains a smoke and chaff launcher, very likely combined with a laser sensor and dazzler system. [115] When a threat is near BODYGUARD automatically fires off smoke and chaff, and its laser, to confuse the aim of PGMs. The PLA also uses a range of decoys. Full-scale representations could include missiles, ships, aircraft, tanks, command vehicles and other vehicles. [116] Replicas are said to include full-scale representations of a tank-type first seen in the 1999 military parade, to include simulating the tank’s radar and infrared profile. [117] The PLA has also used radar reflectors in exercises. These can be inflatable structures with metallic sides that reflect and obscure radar returns
Bistatic radar
Uploaded with
Bodyguard anti PGM
Uploaded with
Uploaded with
SPAA_35mm Skyguardsky
Uploaded with
HQ-16 Medium range Anti Stand off weapon
Uploaded with