FROM ANTONIUS123 (PAKISTAN DEFENSE FORUM)
I may not agree with some of the author points, but a good summary overall.
China Speeds Up Advanced Chip Development
Efforts underway to develop 7nm, DRAM, 3D NAND, and EUV domestically as trade war escalates.
June 22nd, 2020 - By:
China is accelerating its efforts to advance its domestic semiconductor industry, amid ongoing trade tensions with the West, in hopes of becoming more self-sufficient.
The country is still behind in IC technology and is nowhere close to being self-reliant, but it is making noticeable progress. Until recently, China’s domestic chipmakers were stuck with mature foundry processes with no presence in memory. Recently, though, a China-based foundry entered the 14nm finFET market, with 7nm in R&D. China also is expanding into memory. And in the fab equipment sector, China is developing its own
(EUV) lithography system, which is a technology that patterns the most advanced features in chips.
It’s unlikely that China will develop its own EUV system in the near term. And for that matter, the nation’s foundry and memory efforts are modest, at least for now. And China won’t overtake multinational chipmakers anytime soon.
Nonetheless, it is developing its domestic IC industry for several reasons. For one thing, China imports most of its chips from foreign suppliers, creating an enormous trade gap. China has a sizeable IC industry, but it isn’t large enough to close the gap. In response, the nation is pouring billions of dollars into its IC sector with plans to manufacture more of its own chips. Simply put, it wants to become less dependent on foreign suppliers.
China recently accelerated those efforts, especially when the U.S. launched a multi-prong trade war with the nation. In just one example, the U.S. has made it more difficult for Huawei to obtain U.S. chips and software. And recently, the U.S. blocked ASML from shipping an EUV scanner to SMIC, China’s largest foundry vendor. China sees these and other actions as a way to hamper its growth, prompting it to speed up the development of its own technologies.
Meanwhile, the U.S. says its trade-related actions are justified, claiming that China is engaged in unfair trade practices and has failed to protect U.S. intellectual-property. China dismisses those claims. Nonetheless, the industry needs to keep an eye on the trade issues as well as China’s progress in semiconductors. They include:
- SMIC is shipping 14nm finFETs, with a 7nm-like process in R&D.
- Yangtze Memory Technologies (YMTC) recently entered the 3D NAND market with a 64-layer device. A 128-layer technology is in R&D.
- ChangXin Memory Technology (CXMT) is shipping its first product, a 19nm DRAM line.
- China is expanding into compound semis, including gallium nitride (GaN) and silicon carbide (SiC).
- China’s OSATs are developing more advanced packages.
This all sounds impressive, but China is still trailing. “China is spending like crazy. China’s strategy is to be a player in semiconductor manufacturing. It comes from wanting to have a bigger share of its domestic manufacturing capabilities, as well as for security considerations,” said Risto Puhakka, president of VLSI Research. “But China’s share in memory is small. On the logic side, they are behind TSMC. China is far from being self-sufficient from any reasonable aspect.”
Those aren’t the only issues. “There are still many challenges for China, including the need for more talent and IP in semiconductor manufacturing, and the need to further narrow the gap in the leading process technologies,” said Leo Pang, chief product officer at
. “The top challenge is the tension between the U.S. and Chinese governments, which is causing uncertainty in the supply of manufacturing equipment and
software.”
China’s strategy
China has been involved in the IC industry for decades. In the 1980s, it had several state-run chipmakers with outdated technology. So at the time, China introduced several initiatives to modernize its IC industry. With help from foreign concerns, the country launched several chip ventures in the 1980s and 1990s.
Still, China found itself behind the West in semiconductor technology for several reasons. At the time, the West implemented strict export controls on China. Equipment vendors were prohibited from shipping the most advanced tools to China.
Then in 2000, China launched two new and modern domestic foundry vendors — Grace and
. By then the export controls were relaxed in China. Equipment vendors simply required a license to ship tools to China.
Around that time, China became a large manufacturing base with low labor rates. Demand for chips skyrocketed. Over time, the nation became the world’s largest market for chips.
Starting in the late 2000s, multinational chipmakers began building fabs in China to gain access to the market. Intel, Samsung and SK Hynix built memory fabs in China. TSMC and UMC built foundry fabs there.
By 2014, China consumed $77 billion worth of chips, according to IC Insights, but it imported most of them. Plus, China only manufactured 15.1% of those chips, according to IC Insights. The rest were manufactured outside of China.
In response, and armed with billions of dollars in funding, the Chinese government unveiled a new plan in 2014. The goal was to accelerate China’s efforts in 14nm finFETs, memory and packaging.
Then, in 2015, China launched another initiative, dubbed “Made in China 2025.” The goal is to increase the domestic content of components in 10 areas — IT, robotics, aerospace, shipping, railways, electric vehicles, power equipment, materials, medicine and machinery. In addition, China hopes to become more self-sufficient in ICs and wants to increase its domestic production to 70% by 2025, according to IC Insights.
In 2019, China consumed $125 billion worth of chips, according to IC Insights, but it still imports most of them. China only manufactured 15.7% of those chips, so it’s unlikely the country will reach its production targets by 2025.
Fig. 1: China’s IC market vs. production trends Source: IC Insights
China faces other challenges, as well, particularly a shortage of technical talent. “China is still seeking more talent in semiconductor manufacturing,” D2S’ Pang observed. “That is mainly because China is building a dozen new fabs. It has already recruited thousands, if not tens of thousands, of experienced semiconductor engineers from fabs in Taiwan, Korea, Japan and even the U.S. by paying them with very attractive compensation packages.”
On the bright side, China made a quick recovery from the Covid-19 pandemic earlier this year. In the first half of 2020, chip and equipment demand were strong in China and elsewhere. “200mm capacity has continued to be running full with a wide range of end applications. In the 300mm area, this has been a similar situation over this past year,” said Walter Ng, vice president of business development at
.
Others see similar trends. “China semiconductor test and packaging markets have been resilient throughout the Covid-19 period,” said Amy Leong, senior vice president at
. “The demand remains solid, fueled by the combination of the momentum built over the last few years from the ‘Made in China 2025’ initiative, and the recent ‘panic build/buy’ amid China-U.S. tensions. With this said, we are seeing an increasing level of demand uncertainties in China as the fear of a global economic recession mounts.”
The mood is also tense. Starting in 2018, the U.S. launched a trade war with China, slapping tariffs on Chinese-made goods. China has retaliated.
The trade war is escalating. Last year, the U.S. added Huawei and its internal chip unit, HiSilicon, to the “entity list,” saying the companies pose as a security risk. To do business with Huawei, a U.S. company must obtain a license from the U.S. government. Many U.S. vendors have been denied, which impacts their bottom lines.
Then, earlier this year, the U.S. expanded the definition of a “military end user” in China. This is designed to prevent China’s military from obtaining any U.S. technology.
In May, the U.S. moved to stem the flow of chips to Huawei from overseas fabs. “Going forward, an overseas fab must halt sales to Huawei if it meets the following three conditions: A) fab uses U.S. equipment or software to make chips; B) the chip is designed by Huawei; and C) the chipmaker has knowledge the item produced is destined for Huawei,” said Paul Gallant, an analyst with Cowen. “(This requires) foreign chipmakers using U.S. equipment to get a license before selling chips to Huawei. But the language of the new rule may not actually ban such sales. On the upside, the new rule only covers chips actually designed by HiSilicon, not all chips made by overseas fabs being sold to Huawei.”
At some point, TSMC may halt new orders to Huawei. It’s unclear how this will all play out. The rules are fuzzy and could change overnight.