News on China's scientific and technological development.

eprash

Junior Member
Registered Member
Is there any particular field or area of technology that you think China or a chinese company is working on or has made great progress in that's more or less a total secret to most of the world or even to China watchers? I'm thinking controversial fields like GMO babies or matters of absolute national secrecy like next gen weapon systems.

For the topic, I think China is making lots of hidden progress on GMO babies. I don't think that He Jiankui would have done what he did without some support from his University or colleagues, so there may be a University or group of researchers taking a look at what genes to edit to make someone smarter, taller etc and how to safety edit human embryos, even if they aren't doing it on mass. Having 3 of the only gene edited babies in the worlds to study has to account for something.
Honestly you're suspicious, no offence
 

FairAndUnbiased

Brigadier
Registered Member
Is there any particular field or area of technology that you think China or a chinese company is working on or has made great progress in that's more or less a total secret to most of the world or even to China watchers? I'm thinking controversial fields like GMO babies or matters of absolute national secrecy like next gen weapon systems.

For the topic, I think China is making lots of hidden progress on GMO babies. I don't think that He Jiankui would have done what he did without some support from his University or colleagues, so there may be a University or group of researchers taking a look at what genes to edit to make someone smarter, taller etc and how to safety edit human embryos, even if they aren't doing it on mass. Having 3 of the only gene edited babies in the worlds to study has to account for something.
X-ray pulsar navigation. The only navigation that works for deep interplanetary and even interstellar navigation.

Please, Log in or Register to view URLs content!

literal scifi stuff, interstellar navigation tech.
 

escobar

Brigadier
BOE is currently the developer of low-temperature polycrystalline silicon (LTPS) thin-film transistor (TFT) OLED panels for the standard and Plus models of iPhone 15. But the Chinese display giant is facing problems with the yield of the panels, mostly from the light leakage problem.
This means it may unable to start mass production of the panels in June, thereby losing the initial orders from Apple.
Please, Log in or Register to view URLs content!
 

SanWenYu

Captain
Registered Member
We have seen fully autonomous "robotic chemist" created by USTC. Now from CAS we have an automomous "robotic scientist" to work on synthesis of colloidal nanocrystals.

Paper in English:
Please, Log in or Register to view URLs content!


Abstract​

Morphological control with broad tunability is a primary goal for the synthesis of colloidal nanocrystals with unique physicochemical properties. Here we develop a robotic platform as a substitute for trial-and-error synthesis and labour-intensive characterization to achieve this goal. Gold nanocrystals (with strong visible-light absorption) and double-perovskite nanocrystals (with photoluminescence) are selected as typical proof-of-concept nanocrystals for this platform. An initial choice of key synthesis parameters was acquired through data mining of the literature. Automated synthesis and in situ characterization with further ex situ validation was then carried out and controllable synthesis of nanocrystals with the desired morphology was accomplished. To achieve morphology-oriented inverse design, correlations between the morphologies and structure-directing agents are identified by machine-learning models trained on a continuously expanded experimental database. Thus, the developed robotic platform with a data mining–synthesis–inverse design framework is promising in data-driven robotic synthesis of nanocrystals and beyond.

News story in Chinese:
Please, Log in or Register to view URLs content!


北京时间3月3日,一项发表于《自然-合成》的研究首次将数据驱动自动合成、机器人辅助可控合成、机器学习促进逆向设计用于胶体纳米晶(例如钙钛矿)材料合成,探索构建了“机器科学家”平台,有望将科研人员从传统试错实验、劳动密集型表征中解放,聚焦科学创新,实现纳米晶材料数字智造。

审稿人在评价中指出,“赵海涛等人建立了一个由机器学习、机器人自动化和大数据组成的复杂系统,并进一步利用它实现了纳米晶的合成和逆向合成。这项工作成功地将自动化和机器学习协同起来,以实现更有效的胶体纳米晶合成,并详尽报告了其高通量实验大数据。”

该研究由中国科学院深圳先进技术研究院材料界面研究中心喻学锋、赵海涛团队、中国科学技术大学江俊、澳大利亚国立大学殷宗友等共同完成。深圳先进院是第一通讯单位。赵海涛副研究员、江俊教授、殷宗友副教授、喻学锋研究员为该文章的共同通讯作者。深圳先进院赵海涛、陈薇,黄浩,澳大利亚国立大学孙哲浩为该文章的共同第一作者。

打破传统模式,探索数据驱动“机器科学家”

科学研究与机器人、人工智能等前沿技术交叉融合已成为发展趋势,推动材料研发由“科学直觉与试错”的传统模式向“数字化和智能化”的新模式转变,具有鲜明的学科交叉特征,不仅能为解决材料关键共性科学问题提供更好的方案,而且能为探索具有变革性、颠覆性的新概念材料提供更大的可能。

纳米材料制备技术与数字智造和机器人、人工智能交叉融合是科学研究的前沿和热点,目前亟待解决材料的理性设计、可控合成和逆向设计等关键共性科学问题。

传统的材料制备,通常要经历繁杂且漫长的读文献,做实验,想规律等阶段。想要突破从传统的材料合成到材料数字智造的转变,若能搭建“能读”-文献挖掘、“能做”-机器人合成和表征、“能想”-机器学习分析规律的“机器科学家”,赋予其科学家的基本能力,将进一步为材料数字智造赋值、赋能、赋智。

基于这些思考,研究团队设计了智能耗材管理、行走机器人、六轴机器手、自动移液、材料自动合成平台、颜色超灵敏相机原位表征等模块,以纳米晶为例,验证了从化学原料取样、机器人辅助合成、机器人原位表征到机器人逆向设计材料的全过程。

1.jpg
 

SanWenYu

Captain
Registered Member
Chinese scientists made progress in sodium-based battery. International reviewers of the work ranked it as a top 5% "very important paper".

Paper in English:
Please, Log in or Register to view URLs content!


Ultrathin CuF2-Rich Solid-Electrolyte Interphase Induced by Cation-Tailored Double Electrical Layer toward Durable Sodium Storage​


Abstract​


Solid-electrolyte interphase (SEI) seriously affects battery's cycling life, especially for high-capacity anode due to excessive electrolyte decomposition from particle fracture. Herein, we report an ultrathin SEI (3–4 nm) induced by Cu+-tailored double electrical layer (EDL) to suppress electrolyte consumption and enhance cycling stability of CuS anode in sodium-ion batteries. Unique EDL with SO3CF3-Cu complex absorbing on CuS in NaSO3CF3/diglyme electrolyte is demonstrated by in situ surface-enhanced Raman, Cyro-TEM and theoretical calculation, in which SO3CF3-Cu could be reduced to CuF2-rich SEI. Dispersed CuF2 and F-containing compound can provide good interfacial contact for formation of ultrathin and stable SEI film to minimize electrolyte consumption and reduce activation energy of Na+ transport. As a result, the modified CuS delivers high capacity of 402.8 mAh g−1 after 7000 cycles without capacity decay. The insights of SEI construction pave a way for high-stability electrode.


News story in Chinese:
Please, Log in or Register to view URLs content!


郑州大学在钠离子电池界面调控研究方面取得积极进展​

近日,郑州大学化学学院能源化学研究所在钠离子电池阳离子调控界面领域取得积极进展,在国际重要顶级期刊《Angewandte Chemie International Edition》发表题为“Ultrathin CuF2-Rich Solid-Electrolyte Interphase Induced by Cation-Tailored Double Electrical Layer toward Durable Sodium Storage”的原创性研究论文,该项工作得到了国际同行的高度认可,被评审专家选为期刊Top 5% 的Very Important Paper(VIP论文),论文的第一作者为博士研究生宋轲铭,论文通讯作者为陈卫华教授,郑州大学化学学院为第一单位和通讯单位。

钠离子电池因资源丰富、价格低等优点成为规模储能领域最具潜力的电池体系之一,部分具有大规模应用潜力的重要正、负极材料正在走向产业化进程。然而,具有长循环性能的高容量负极仍然是一个很大的挑战。其中,CuS、NiS、FeS2等转化型金属硫化物因其丰富的无毒元素而备受关注。然而其循环过程中由于颗粒破碎不断形成厚的固态电解质界面膜(SEI)导致电解液过度消耗和电极的高极化,进而造成负极容量不断损失。因此,高容量负极的SEI设计对于长寿命电池仍是挑战性难题。陈卫华教授研究团队通过Cu+调控的双电层在CuS负极表面实现了超薄SEI(3-4 nm)构建,抑制电解液分解提升钠离子电池的循环稳定性。铜集流体在NaSO3CF3/二乙二醇二甲醚(DGM)电解液中溶解出微量Cu+,在CuS负极的双电层中,SO3CF3-Cu吸附在电极表面,进一步还原形成富CuF2的SEI。分散的CuF2和含氟化合物具有良好的界面接触,导致超薄稳定的SEI,降低钠离子传输活化能提高扩散速率。修饰的CuS循环7000周容量无衰减。该工作为解决高容量负极材料容量衰减的问题提供了一种新策略。

此外,陈卫华教授团队2021年在钠离子电池界面调控研究方面提出了界面催化策略诱导快速形成完整的二维超薄SEI机制,设计了一种FeS2纳米簇嵌入N, S掺杂碳骨架的负极材料,材料表面以点阵形式分布的Fe-N-C/Fe-S-C键作为众多催化中心催化电解质溶液分解,FeS2纳米簇作为晶核,诱导形成完整的、二维超薄SEI膜,获得超高首周库伦效率(~92%)、超长循环稳定性(10000周容量保持92.7%),低温下性能(-15oC)和高速钠存储动力学。(Angew. Chem. Int. Ed.2021,60, 11481,入选Wiley-VCH Hot Topic: Surfaces and Interfaces,ESI高被引论文)。

这些研究得到了国家自然科学基金、河南省省级科技研发计划联合基金项目和郑州大学的资助。
 

SanWenYu

Captain
Registered Member
Chinese scientists from SJTU created a dielectric copolymer with better thermal conductivity and higher resistivity (an order of magnitude higher than the existing polymers).

Paper:
Please, Log in or Register to view URLs content!


Ladderphane copolymers for high-temperature capacitive energy storage​

Abstract​

For capacitive energy storage at elevated temperatures
Please, Log in or Register to view URLs content!
,
Please, Log in or Register to view URLs content!
,
Please, Log in or Register to view URLs content!
,
Please, Log in or Register to view URLs content!
, dielectric polymers are required to integrate low electrical conduction with high thermal conductivity. The coexistence of these seemingly contradictory properties remains a persistent challenge for existing polymers. We describe here a class of ladderphane copolymers exhibiting more than one order of magnitude lower electrical conductivity than the existing polymers at high electric fields and elevated temperatures. Consequently, the ladderphane copolymer possesses a discharged energy density of 5.34 J cm−3 with a charge–discharge efficiency of 90% at 200 °C, outperforming the existing dielectric polymers and composites. The ladderphane copolymers self-assemble into highly ordered arrays by π–π stacking interactions
Please, Log in or Register to view URLs content!
,
Please, Log in or Register to view URLs content!
, thus giving rise to an intrinsic through-plane thermal conductivity of 1.96 ± 0.06 W m−1 K−1. The high thermal conductivity of the copolymer film permits efficient Joule heat dissipation and, accordingly, excellent cyclic stability at elevated temperatures and high electric fields. The demonstration of the breakdown self-healing ability of the copolymer further suggests the promise of the ladderphane structures for high-energy-density polymer capacitors operating under extreme conditions.

News:
Please, Log in or Register to view URLs content!


聚合物是一类重要的电工绝缘材料,然而聚合物材料的导热性普遍性较差,提升聚合物的导热性往往以牺牲绝缘性能为代价。“绝缘和导热的矛盾”是制约聚合物材料在尖端电气电子装备应用的瓶颈之一。

3月2日,《自然》刊发上海交通大学化学化工学院教授黄兴溢团队与合作者的最新研究成果。研究人员通过等规链段层状排列构建阵列化纳米区域,并在阵列化纳米区域中引入亲电陷阱基团,在大幅提升柔性聚合物电介质薄膜导热性能的基础上使电阻率提升了一个数量级,解决了聚合物材料导热和绝缘的矛盾。这种聚合物电介质薄膜性能稳定,且具有良好击穿自愈性,因此在电磁能装备、新能源汽车、电力电子等领域将有广阔应用前景。
 
Top