More to think about ADAS. For BYD, the guy in charge of it is Hanbing. He took over in May after the old head resigned and that team of over 500 engineers joined his electronic integration team. This team takes over ADAS now
he presented back in June and showed the following
also shown here, look at that last slide, U8 not only has 508 TOPS but also 456k DMIPS of computation, that is one powerful platform.
BYD doesn't even show Nvidia Logo
- next step is not use Lidar or high precision map
sounds like they consider their IP to be the most important and other things like sensors, ai chips & algo are plug and play
比亚迪智能驾驶研发负责人王欢已经离职,其负责的智能驾驶开发部被分拆整合,该部门超500名员工,大部分被分流进韩冰负责的电子集成部。此次调整完成后,电子集成部总监韩冰已经成为比亚迪规划院的智能驾驶研发负责人。与此同时,韩冰还在同步筹备比亚迪的智能驾驶芯片设计团队。
he presented back in June and showed the following
在今天的 2023 北京智源大会上,比亚迪规划院院长助理兼电子集成部总监韩冰谈到了一些比亚迪智能驾驶的数据情况。
关于数据闭环的系统建设、数据积累方面:比亚迪现有智能驾驶研发车队约 300 辆、数据规模约 150 PB 的历史数据,并且每天新增 1 PB 数据。(1 PB = 1024 TB);自动标注比例超过 95%。
图像感知数据 45 亿、Lidar 感知数据 15 亿。
预计今年还会累计有 6 亿公里的数据,并在未来通过采集车辆和量产车,完成指数级的数据增长。
感知模型的开发已经做到了 100% 的数据驱动,多相机 BEV 模型处于研发中,计划今年量产。
车载端大算力平台假设方面:
这边的重点是,智驾操作系统 BOS、域控制器,比亚迪自研;核心的芯片采用的是供应商,508 TOPS 算力平台,显然采用的是英伟达 Orin-X。
下一步的应用:
首先是完成数据驱动的 Occupancy & Object 检测,可以复用过去采集的 150 PB 数据;占用网络上车,无需激光雷达即可解决地面凸起物、路牙等通用障碍物检测,实现城市端到端的智驾体验。
also shown here, look at that last slide, U8 not only has 508 TOPS but also 456k DMIPS of computation, that is one powerful platform.
But note this, Nvidia's chip is standalone plug in and can be swapped out. BYD controls the entire process. Nvidia or horizon robotics aren't used for algo or computation platform算力平台,只提了车端的 508 TOPS,显然是英伟达 Orin-X,但韩总全程强调自主可控,英伟达 Logo 都没出现。云端训练集群没有介绍。
BYD doesn't even show Nvidia Logo
lower level software (OS and interaction with sensors and chips hardware) are complete, so just working on algo.- 底层软件,码得很完整。 - 算法的展望,接下来要做占用网络、不依赖激光雷达和高精地图,基本上也是头部都在做的事。
- next step is not use Lidar or high precision map
BYD's sensory model is 100% data driven with multi-camera BEV model. BEV model is integrated with Yangwang's 易四方platform韩冰说,比亚迪感知模型的开发已经做到了 100% 的数据驱动,并同时研发了拥有多相机的 BEV 模型,计划是今年可以做到量产。BEV 模型结合比亚迪的易四方平台,可以研发出一些具有特色的高级辅助驾驶功能。
BYD's LLM revolves around camera & Lidar constructing 4D construction of obstacles and targets. Lidar is more accurate/precise, this approach is 4D and data driven & can more easily identify obstacles韩冰还介绍了比亚迪的大模型可以用于针织系统的自动标注。比亚迪围绕相机和激光雷达结合时序建立了 4D 障碍物自动标注的系统,该系统通过历史数据的挖掘和计算可以生成一批具有真值的数据,为算法研究提供数据支持,节省人力成本。
其优势大概有四点:第一是以激光雷达的数据为核心,精度更高;第二是结合了时序的 4D 真值,感知范围更广;第三是数据驱动,以小数据驱动,再快速迭代;第四是可以迅速扩展新障碍物的类别。
BYD approach is to develop the OS, domain controller & software/hardeware integration. And then outside suppliers supply the algo. they are working with Momenta, but there could be others. They are using Orin initially, but they can use baidu chip, horizon journey 5, black sesame or develop their own ahead同时整个智驾的软硬件平台,其开发都是基于模块化的分工,这样既保证可控,也可以跟外部供应商进行并行的协同开发。
好处是产品更加可靠同时降低研发成本,优质的代码和模块运用到量产产品中,这样的分工可以实现高效的合作。
这某种程度上反映了比亚迪当前的智驾研发策略:底层软硬件自研可控,上层算法模块与应用可以由供应商提供,加快量产
sounds like they consider their IP to be the most important and other things like sensors, ai chips & algo are plug and play