On March 22, 2023, the research group of Professor Peng Hailin of Peking University published a research paper entitled "2D fin field-effect transistors integrated with epitaxial high-κ gate oxide" in the journal Nature.
This study reported a new two-dimensional semiconductor vertical fin/high dielectric self-oxide epitaxial integration architecture (2D fin/oxide Bi2O2Se/Bi2SeO5), and developed a high-performance two-dimensional fin field effect transistor (2D FinFET). The two-dimensional semiconductor fin/self-oxide epitaxial heterostructure has an atomically flat interface and an ultra-thin fin thickness (up to a unit cell thickness, ~1.2 nm), and realizes the wafer-level single-directional array preparation and fixed-point , high-density growth. Two-dimensional FinFET based on Bi2O2Se/Bi2SeO5 epitaxial heterojunction with high electron mobility up to 270 cm2/Vs, extremely low off-state current (~1 pA/μm) and high on/off-state current ratio (108), the on-state current density is as high as 830 μA/μm when the channel length is 400 nm, meeting the 2028 low-power device target requirements of the International Devices and Systems Roadmap (IRDS). This original work broke through the bottleneck of three-dimensional heterogeneous integration of key new materials and new architectures for high-speed and low-power chips in the post-Moore era, and brought new opportunities for the development of future chip technologies that break through the limits of silicon-based transistors.
The corresponding author of the paper is Professor Peng Hailin, and the co-first authors are Tan Congwei, Yu Mengshi, Tang Junchuan, and Gao Xiaoyin.
2023年3月22日,北京大学彭海琳教授课题组在《自然》(Nature)期刊上发表题为“2D fin field-effect transistors integrated with epitaxial high-κ gate oxide”的研究论文。
该研究报道了一种全新二维半导体垂直鳍片/高介电自氧化物外延集成架构(2D fin/oxide Bi2O2Se/Bi2SeO5),并研制了高性能二维鳍式场效应晶体管(2D FinFET)。二维半导体鳍片/自氧化物外延异质结构具有原子级平整界面和超薄的鳍片厚度(可达一个单胞厚度,~1.2 nm),并实现了晶圆级单一定向阵列制备以及定点、高密度生长。基于Bi2O2Se/Bi2SeO5外延异质结的二维鳍式场效应晶体管具有高达270 cm2/Vs的电子迁移率、极低的关态电流(~1 pA/μm)和很高的开/关态电流比(108),沟道长度为400 nm时开态电流密度高达830 μA/μm,满足国际器件与系统路线图(IRDS)的2028年低功耗器件目标要求。该原创性工作突破了后摩尔时代高速低功耗芯片的关键新材料与新架构三维异质集成瓶颈,为开发突破硅基晶体管极限的未来芯片技术带来新机遇。
论文通讯作者是彭海琳教授,并列第一作者是谭聪伟、于梦诗、唐浚川、高啸寅。
This study reported a new two-dimensional semiconductor vertical fin/high dielectric self-oxide epitaxial integration architecture (2D fin/oxide Bi2O2Se/Bi2SeO5), and developed a high-performance two-dimensional fin field effect transistor (2D FinFET). The two-dimensional semiconductor fin/self-oxide epitaxial heterostructure has an atomically flat interface and an ultra-thin fin thickness (up to a unit cell thickness, ~1.2 nm), and realizes the wafer-level single-directional array preparation and fixed-point , high-density growth. Two-dimensional FinFET based on Bi2O2Se/Bi2SeO5 epitaxial heterojunction with high electron mobility up to 270 cm2/Vs, extremely low off-state current (~1 pA/μm) and high on/off-state current ratio (108), the on-state current density is as high as 830 μA/μm when the channel length is 400 nm, meeting the 2028 low-power device target requirements of the International Devices and Systems Roadmap (IRDS). This original work broke through the bottleneck of three-dimensional heterogeneous integration of key new materials and new architectures for high-speed and low-power chips in the post-Moore era, and brought new opportunities for the development of future chip technologies that break through the limits of silicon-based transistors.
The corresponding author of the paper is Professor Peng Hailin, and the co-first authors are Tan Congwei, Yu Mengshi, Tang Junchuan, and Gao Xiaoyin.
2023年3月22日,北京大学彭海琳教授课题组在《自然》(Nature)期刊上发表题为“2D fin field-effect transistors integrated with epitaxial high-κ gate oxide”的研究论文。
该研究报道了一种全新二维半导体垂直鳍片/高介电自氧化物外延集成架构(2D fin/oxide Bi2O2Se/Bi2SeO5),并研制了高性能二维鳍式场效应晶体管(2D FinFET)。二维半导体鳍片/自氧化物外延异质结构具有原子级平整界面和超薄的鳍片厚度(可达一个单胞厚度,~1.2 nm),并实现了晶圆级单一定向阵列制备以及定点、高密度生长。基于Bi2O2Se/Bi2SeO5外延异质结的二维鳍式场效应晶体管具有高达270 cm2/Vs的电子迁移率、极低的关态电流(~1 pA/μm)和很高的开/关态电流比(108),沟道长度为400 nm时开态电流密度高达830 μA/μm,满足国际器件与系统路线图(IRDS)的2028年低功耗器件目标要求。该原创性工作突破了后摩尔时代高速低功耗芯片的关键新材料与新架构三维异质集成瓶颈,为开发突破硅基晶体管极限的未来芯片技术带来新机遇。
论文通讯作者是彭海琳教授,并列第一作者是谭聪伟、于梦诗、唐浚川、高啸寅。