IR suppression
IR suppression for an aircraft usually starts with the engine. The signatures of hot parts are most easily suppressed by masking. The plume is shrunk primarily by enhancing the mixing of exhaust air with ambient air to reduce temperature and pressure more quickly. Common techniques include increasing engine bypass ratio and injecting cooler air, water vapor or carbon particles into the exhaust. Another method is to augment nozzles with chevrons, scallops or corrugated seals to promote radial spreading of the plume and mixing with ambient air. Chevrons along the nozzle trailing edge also create shed vortices, which accelerate mixing. These augmentations reduce sound emissions as well, which is why new airliner engines are fitted with chevron exhaust nozzles. Patents filed for these nozzles cite “substantial reduction in noise and IR signature.”
Skin emissions can be reduced by using low-emissivity materials. Theoretical studies have suggested reducing skin emissivity from 1 to 0 can halve detection range. Layering materials with different indices of refraction can make surfaces reflective at certain wavelengths and emissive in others, such as those with greater atmospheric attenuation. Of course, surface coatings on stealth aircraft must also consider their radar effects.
Panther Piss and Platypuses
IR suppression has been part of U.S. low-observability initiatives for over a half century, often integrated with efforts to reduce rear RCS. The CIA’s A-12, the first aircraft designed with signature control as a major criterion, was the first U.S. aircraft to suppress its rear RCS and reduce its vulnerability to IR-guided missiles. The aircraft’s innate rear radar and IR signatures were large, due to the round, open titanium and steel nozzles and massive exhaust plumes. Lockheed compensated by adding “Panther Piss”—later revealed in declassified CIA documents to be cesium—to the fuel. This ionized the exhaust plume, reducing the aft-quadrant RCS, while also confounding IR-guided missiles of the time, possibly by radiating so intensely in NIR and MWIR that it saturated early sensors.
With the F-117, the first aircraft to use low observability as its primary means of survivability, Lockheed made IR suppression inherent to construction. The F-117’s fuselage sloped aft from an apex above the cockpit to a broad, flat feature dubbed the “platypus.” The engine exhaust flattened to thin slots 4-6 in. deep and 5 ft. wide, divided horizontally into a dozen or so channels. The lower fuselage terminated in a lip extending 8 in. past the exhaust at a slightly upward angle. This was covered in “heat-reflecting” tiles, similar to those used on the space shuttle, that were cooled by bypass air from the engines.
The platypus shielded the hot metal parts while the flattened plume reduced IR intensity from the side and accelerated mixing with ambient air. The extended lip masked the exhaust slot and first 8 in. of plume from below, while the low-emissivity tiles limited IR absorption and emission.
With the F-117, engineers were also introduced to the difficulty of balancing radar and IR signature suppression with the demands of extreme heat and pressure tolerance. The platypus was reportedly the hardest part of the design. Heat kept causing the structure to deform and lose its faceted outer shape. Ultimately, a structures expert designed a set of “shingled” panels that slid over each other to accommodate thermal expansion.
Northrop’s B-2 stealth bomber kept many of the IR suppression techniques of the stealth fighter. Buried deep within the flying wing, the B-2’s engines are prevented from heating the outer surface. Exhaust is cooled by bypass air, including from secondary air intakes, and flattened prior to exiting over “aft deck” trenches built of titanium and covered in low-emissivity ceramic tiles. Likely containing magnetic radar-absorbent material (RAM), these extend several feet behind the nozzles, blocking the plume’s core from below and the side. Also, the engine fairings and aft deck both terminate in large chevrons, which introduce shed vortices.
This aft deck has proven one of the largest drivers of maintenance cost and time on the aircraft. By the late 1990s, B-2s were experiencing exhaust lip blistering and erosion of the magnetic RAM faster than anticipated. New tiles were developed and new coatings added to the tailpipe, but cracking in the aft deck continued. By the mid-2000s, all 21 B-2s suffered from them. Interim fixes were fielded, including thermally protective covers for the tiles, while a long-term fix was developed which by 2010 was called the Third-Generation Aft Deck.
Turbine Shields and Topcoats
For Lockheed’s
and
, the need for afterburning engines, supersonic flight and fighter agility, as well as the desire for less maintenance, would require some new approaches. The U.S. stealth fighters use similar IR suppression techniques for internal engine parts, tail structures and airframe coatings. They diverge most noticeably in nozzle design.
The horizontal tails of both aircraft extend well beyond the nozzles, restricting the view of the exhausts and plume core in the azimuthal plane from the side and into the rear quadrant. The engines of both also have stealthy augmenters. Aft of the low-pressure turbine are thick, curved vanes that, when looking up the tailpipe, block any direct view of the hot, rotating turbine components. Fuel injectors are integrated into these vanes, replacing the conventional afterburner spray bars and flame holders. The vanes mask the turbine and contain minute holes that introduce cooler air.
Both aircraft also feature IR-suppressive skin coatings. The final addition to the F-22’s low-observable treatment is a polyurethane-based “IR topcoat” precisely sprayed by robots. Such IR topcoats have also been included in the
’s Have Glass signature reduction program. The F-22 may also use fuel to cool its leading edges.
Despite the RAM fiber mats in the F-35’s skin, Lockheed still finishes the aircraft with a polyurethane-based RAM coating applied by a newer robotic system. Program officials have stated this outmost layer possesses anti-friction properties; MWIR imagery of the F-35 suggests low emissivity as well. Both aircraft coatings still exhibit poor wear and temperature resistance and have needed time-intensive recoatings more frequently than desired. In 2015, the U.S. Air Force announced it was testing a new coating for the F-35 with better abrasion and temperature resistance.
The exact composition of the coatings is unknown, but polyurethane is often used as a matrix material due to its relatively high durability, adhesion and resistance to chemicals and weather. It has a natural emissivity of 0.9, but many fillers have been demonstrated to reduce the emissivity when used in composite materials. Levels as low as 0.07 have been achieved with bronze, although at the expense of higher conductivity and therefore radar reflectivity. Multilayer glass microspheres of 5-500 µm diffused at 50-70% weight can achieve low emissivity at selected wavelengths and would probably be radar-neutral. Unoxidized iron also has emissivity in the 0.16-0.28 range, and its polyurethane-matrix composites have shown emissivity below 0.5.
(Part 1)