055 DDG Large Destroyer Thread

Status
Not open for further replies.

Brumby

Major
If you're not interested in the configuration of the radar, that is fine, but I am.

It's not like this is a minor detail being quibbled over either; whether 346 is a S band with C band arrays or not, will have consequences for what kind of guidance the original HHQ-9 has, as well as consequences for what kind of configuration the subsequent 346A and 346B radars may have as well as subsequent PLAN SAMs after the original HHQ-9s.

What is your conclusion?
 

Tam

Brigadier
Registered Member
years ago I wondered if it wasn't a triple-band radar on the Type 055 mast

Jun 28, 2017

The whole ship might be dual banded, just not entirely on the mast.

Mast - X-band
Deckhouse - S-band

Additional panels seen on top of the mast with the X-band radar are not likely radar but something else. They are likely to be for communication or high speed data links.
 

Brumby

Major
The following article written by Dr. Sue Robertson and published by Mönch is a good summary of modern shipborne AESA radar out there. AFAIK, type of guidance is dependent on the missile and not the sensor.

The first shipboard AESA radar was the OPS-24 fire control radar mounted on the Japanese destroyer HAMAGIRI (DD 155) launched in 1988. Developed by Mitsubishi, OPS-24 operated in the L-band (1-2GHz) and had 360° azimuth coverage. A more recent development for the Japanese Maritime Self Defense Force (JMSDF) is the FCS-3 integrated naval weapon system. This multifunction AESA radar has two sets of antennas: The larger one operates in the C-band (4-8GHz) for surveillance and tracking, the smaller one is an X-band (8-12GHz) fire control radar. FCS-3 was introduced in 2007 with an enhanced version, FCS-3A, being installed on the AKIZUKI-class (19DD) destroyers.

One of the first AESA radars to be deployed on a European warship is the Active Phased Array Radar (APAR), a multifunction, 3D radar developed by Thales Nederland. It has four fixed sensor arrays mounted on a pyramidal structure, each array consisting of 3,424 TRMs operating in the X-band. APAR can track over 200 air targets to a range of 150km and over 150 surface targets to a range of 32 kilometres. It can carry out horizontal search out to 75km and a volume search out to 150 kilometres. Thirty-two semi-active radar homing missiles can be guided simultaneously, including 16 in the terminal guidance phase. APAR is installed on four Royal Netherlands Navy frigates, three Royal Danish Navy frigates, and three German Navy Type F124 frigates.
Germany has also selected the TRS-4D/NR (Non-Rotating) system developed by Airbus DS for four new Type F125 frigates, with an Initial Operating Capability (IOC) in 2016. The TRS-4D/NR, operating in the C-band, is installed with four fixed antenna panels mounted on the ships’ two main masts. TRS-4D/NR can carry out several reconnaissance tasks simultaneously. It can do a long-range scan of the sea surface and airspace while tracking individual targets, operating in both ‘blue water’ and littoral environments.
The RAN-40L, a 3D, L-band search radar produced by Leonardo-Finmeccanica, is used for long-range maritime air surveillance and early warning, and is capable of detecting and tracking aircraft or UAS up to 400km away. Radar coverage is obtained by phase scanning in elevation, while mechanically rotating an antenna in azimuth. RAN-40L is deployed on the Italian aircraft carrier CAVOUR (C 550).

The Italian manufacturer also unveiled a new version of its KRONOS multifunction AESA radar in 2014. It can perform surveillance, tracking, threat evaluation, and fire control against multiple threats, simultaneously and automatically, at all altitudes. The radar has been designed to detect even very small maritime threats, and can provide missile guidance. It links surveillance to air defence, covering all threats from low-level supersonic cruise missiles to small UAVs.

In operation on-board the UK Royal Navy’s Type 45 destroyer, the SAMPSON radar is at the core of the SEA VIPER naval air defence system. A dual-face AESA radar produced by BAE Systems Maritime, it provides surveillance and dedicated tracking of hundreds of targets, enabling the Type 45 to defend itself and other ships in its company from attack. SAMPSON is compatible with both active and semi-active homing missile systems, providing mid-course guidance, and it operates in the S-band (2-4GHz) with a power of 25kW and a range of 400 kilometres.

In August 2005, Australia and the US signed an agreement to develop AESA technology in Australia. CEA Technologies in Australia and Northrop Grumman in the US jointly developed CEAFAR as part of Australia’s project to make its ANZAC frigates survivable against supersonic cruise missile attacks. CEAFAR is an S-band AESA radar, designed to be supplemented with the X-band CEAMOUNT solid-state Continuous Wave Illuminator. The combined system of radar and illuminator allows the generation and maintenance of more than 10 simultaneous fire control channels.

IAI has developed MF-STAR (ELM-2248) for use on naval platforms. It delivers a high-quality situation picture and weapon support under severe target/environmental conditions. MF-STAR incorporates a lightweight antenna with four active arrays operating in the S-band that can be tailored to fit even relatively small ships. Additionally, it can provide guidance for anti-air missiles and automatically initiates tracking for low-flying attacking missiles at ranges of 25km and for high-flying fighter aircraft at more than 120 kilometres. Hundreds of targets can be tracked simultaneously. It is currently installed on the Indian Navy’s VIKRANT-class aircraft carrier and KOLKATA-class destroyers, as well as the Israel Navy’s EILAT-class (SA’AR 5) corvettes.
The Type 346 radar, with an antenna array comprising 1,524 TRMs, is installed on-board two PLAN-operated LUYANG II-class (Type 052C) destroyers. The PLAN’s aircraft carrier LIAONING (16), formerly constructed for the Soviet Navy, has a similar radar using technology characterised by high-energy consumption that requires special cooling equipment. A new AESA system being installed on the new-generation LUYANG III-class (Type 052D) destroyers has a liquid cooling system for the antenna instead of the air cooling system in the Type 346 radar. As a liquid cooling system has larger cooling capacity and the contact area is bigger in the antenna array, it must be assumed that the new radar has greater power and better performance than the Type 346.
 

Brumby

Major
Part 2

CONTINUING ADVANCES

In 2015, Thales Nederland unveiled the NS100 3D Naval Air and Surface surveillance radar. Different types of targets put different requirements on the radar: fighters require long-range; high-diving missiles require elevation coverage; sea skimming missiles require fast reaction time; and hovering helicopters and UAVs require good clutter suppression. The NS100 detects this wide variety of targets in one single mode. The radar can be scaled by adding TRMs to meet the diverse requirements and operational needs of navies. The same basic radar can be optimised for different ship classes, leading to fleet-wise logistic advantages.

Saab has introduced its new solid-state naval radar system, the SEA GIRAFFE 4A, which is an S-band AESA radar featuring a 360° rocket, artillery and mortar (RAM) locator and target tracking for long-range surface-to-air missiles. Capable of classifying both hovering and moving helicopters, the radar can also detect and classify UAVs. SEA GIRAFFE 4A, scheduled to be delivered in 2016, will be incorporated on-board the US Navy’s INDEPENDENCE variant Littoral Combat Ship (LCS).

The Air and Missile Defense Radar (AMDR aka AN/SPY-6[V]) is the US Navy’s next-generation air and missile defence radar. Developed by Raytheon, it will be deployed initially on the DDG-51 Flight-III destroyers, and will enhance the ships’ ability to detect air and surface targets and ballistic missile threats.

AMDR is constructed with individual building blocks, called Radar Modular Assemblies (RMA). Each RMA is a self-contained radar in a box measuring 60.96cm cubed. Individual RMAs are stacked to form any size array to fit the mission requirements of any ship, making AMDR the Navy’s first truly scalable radar. For the ARLEIGH BURKE-class destroyers, AMDR will feature 37 RMAs, giving a 15dB advantage over the AN/SPY-1D(V) currently installed on US destroyers. AMDR’s performance and reliability are the result of more than 10 years investment in the production of high-powered GaN semiconductors. AMDR’s GaN components cost 34% less than traditional GaAs alternatives, deliver higher power density and efficiency, and have a meantime between failures of 100 million hours.

LESSONS FROM THE MESS

With the launching of two new S-and X-band classes of the GIRAFFE surface radar on 12 May 2014, Saab continues to embark on multifunction radar options, providing a unique capability to nearly all military and security missions. Based on gallium nitride (GaN) semiconductor technology, the new radars include the X-band GIRAFFE 1X and S-band GIRAFFE 4A systems, as well as GIRAFFE 8A which is also operating in the S-band. The two new classes also include Sea GIRAFFE 1X and Sea GIRAFFE 4A as naval variants.

With a detection range of 350km, the latter exceeds twice the detection range of the earlier Sea GIRAFFE system found aboard the Royal Swedish Navy’s VISBY-class corvettes and US Navy’s INDEPENDENCE variant LCS. Saab EDS quotes this radar’s simultaneous detect and classify capacity at more than 1,000 tracks.

Sea GIRAFFE 4A combines air surveillance, air defence, sense and warn, and weapon locating capabilities in a single, low-footprint AESA radar, the company noted. Saab also explained that the GIRAFFE 8A radar is the surface-based variant of the company’s ERIEYE AEW&C radar system, exceeding a range of over 450 kilometres. It is also suitable for the TBMD role.

The GaN semiconductor technology used in the five new GIRAFFE options allows for a much higher output level, providing the radars with a longer range and a capability to detect and track very small objects in the air over distances of over 100 kilometres. Each of the five radars will be relatively cheap to operate and potentially capable of operating in a dense, complex Electronic Countermeasures (ECM) environment and under the harshest climatic conditions. Compared to gallium arsenide (GaAs), which is not wideband and robust enough, GaN is extremely useful for detecting very small airborne targets, including RAM targets, and offers a larger bandwidth, according to Saab. GaN offers smaller chip sizes (12sqmm) when compared to GaAs whose chip size is usually greater than 15 square millimetres. Three of the radars, operating in the S-band, address advanced applications in medium- to long-range air defence and air surveillance applications.

The demand for 3D AESA radars will continue to grow worldwide. Developments in airborne AESA technology are likely to include the creation of so-called smart skins, i.e. integration of new-generation TRMs into the platform’s fuselage, allowing for a larger number of antenna elements.
 

Blitzo

Lieutenant General
Staff member
Super Moderator
Registered Member
What is your conclusion?

Well that's what we're discussing...

My belief is that the original Type 346 has the central S band array sandwiched by two C band arrays as described by the post about its development. The C band arrays are involved in guidance for the original variant HHQ-9s the 052C carried. The central S band and two C band arrays give it its distinct rectangular appearance.

For the Type 346A (and 346B after it), I suspect that its square geometry may reflect that the C band arrays have been deleted and that the entire thing is now an S band array, which of course would have consequences for the guidance of the SAMs that 052D uses.
The PLA and PLAN keep new missile variants quite close to their chest, and part of the reason is because it's difficult for us to spot any obvious external differences in new missile variants when they are stored in tubes or canisters most of the time, not to mention advances in guidance may not yield obvious external differences anyway. We have rumours of new missile variants for existing types in service of course, but not much in regards to what advancements or improvements they offer.

But given we know that they were offering FD-2000s (i.e.: export HQ-9s) in the early 2010s with ARH guidance, I suspect that 052Ds may have evolved variants of the original HHQ-9 with ARH guidance, which would jive with why their 346A looks like it may be an S band only array.



... however as I said at the beginning of this particular chain of discussion, this is only what I suspect and we haven't had any good quality rumours definitively saying either/or.
 

Blitzo

Lieutenant General
Staff member
Super Moderator
Registered Member
The following article written by Dr. Sue Robertson and published by Mönch is a good summary of modern shipborne AESA radar out there. AFAIK, type of guidance is dependent on the missile and not the sensor.

Those are the basics of missile guidance and worldwide naval AESAs, which I think Tam and I are both somewhat familiar with.

To put it generally, missile guidance type is dependent on the missile in question, the ship's sensor/fire control sensor, and the ship's own overall combat management system.



Sometimes you are able to deduce the type of missile guidance that a missile has by virtue of the ship's sensor/fire control sensor arrangement.
 

AndrewS

Brigadier
Registered Member
CYA activities like "Notably, the service is putting $5.15 million toward a “Land Based Integration and Test” endeavor."


sure

And that compares to the $22,500 million R&D programme for the Zumwalt, which was supposed to replace the Ticonderoga and Arleigh Burke.

$5 million over the next 5 years is peanuts.
 
Status
Not open for further replies.
Top