Case Study: ZTQ15
The ZTQ15 is arguably the most recognisable component of the PLAGF's equipment modernisation; a great many people who know practically nothing about the PLA or China as a whole nevertheless know the PLA has a new light tank. The ZTQ15 is thus a good case study to illustrate the direction of the PLA's hardware upgrades. It was tailored for operations in hostile environments such as altitudes over 4500m above sea level and soft muddy terrain. Its V8 engine with a bore diameter of 132mm, stroke length of 145mm, and maximum RPM of 2600, outputs 660kW of maximum continuous power, giving the 33t vehicle a PWR of 20kW/t. To overcome the thin air of the Plateau, the engine is equipped with a two-stage turbocharger that minimises power loss. It is also equipped with a warmer to facilitate quick ignition in extremely cold weather. The engine is coupled to a hydro-mechanical automatic transmission together as a powerpack that can be swapped out within half an hour. The suspension is a semi-active torsion bar system sporting electronically controlled viscous dampers with adjustable orifices that are narrowed or widened in real time depending on sensor readings, providing a smoother ride and reducing crew fatigue, important in the oxygen-sparse atmosphere. If the system breaks down, it simply becomes a passive viscous damper that still provides decent ride quality.
Due to its unique operating environment of highly adverse and isolated terrain where resupply and replacements have great difficulty reaching, the ZTQ15 is designed with multipurpose functionality to get as much bang for the buck as possible. Its FCS is integrated with both direct and indirect fire modes, allowing ZTQ15s to stand in for howitzers if needed. This is achieved by equipping the vehicle with high-precision inertial measurement units and Beidou receivers connected via CAN bus to a central computer. This allows its position and orientation in space to be precisely known so that the battalion or brigade fires director can construct an accurate spatial representation of shooters and targets in 3D and accurately plan indirect fires. Another feature enabled by constant position and orientation awareness is that a ZTQ15 can hand over prosecution of a target to another ZTQ15 in the network if it's unable to prosecute the target itself due to, say, a damaged gun or lack of ammo; essentially remote-controlling someone else's gun to shoot whatever it's looking at even if the target is obscured to the shooter vehicle. This is possible because every vehicle in the network knows its position and orientation relative to everyone else, and if one vehicle knows the position of the target in a 3D space, everyone does.
Many of ZTQ15's features such as FCS automation, digital information displays, high-power-density diesel engine, and networked fleet-based combat lay the foundations for the PLA's next-gen MBT. Current in-service FCS already automate target range-finding, tracking, and leading. This leaves the gunner responsible for target acquisition, firing, and damage assessment. When not engaging a target, the gunner is also responsible for scanning the highest-threat sector where the turret is pointed, usually frontal. Further refinement of automation technologies in the next ten years could mean the gunner only has to spot or confirm an enemy and the FCS will do the rest. The commander's communication and scanning functions have also been automated to a large degree. Recent developments in wearable displays and augmented reality technology promises even greater improvements in this field for both the gunner and commander. Drivers too have an increasingly easy time as old unassisted tillers turned into steering wheels while transmissions became smoother then fully automatic. Vehicle parameters that required driver attention have gradually come under the stewardship of electronic control units, freeing up drivers to pay greater attention to their surroundings.
It is thus being seriously considered to merge the gunner and commander into one position and expand the driver's role to include communications and forward sector scanning for the next-gen MBT. The resulting two-man crew can each have an 80cm-wide workspace and be protected by a healthy amount of side armour without the vehicle exceeding 3.5m overall width or be any heavier than existing MBTs. The unmanned turret can be lightly armoured, cutting turret weight by more than ten tonnes which can then be devoted to more armour for the crew. More refined automation and seamless integration and presentation of imagery and data from onboard and offboard sensors could allow the next-gen MBT to have situational awareness superior to today's tanks in spite of a reduction in crew size. The ZTQ15's extensive use of network systems and new information terminals should give Chinese tank designers hard data and operational experience that will help them identify promising approaches for the next-gen MBT. However, successful development of informationisation and automation to a degree sufficient for a two-man crew in a reasonable timeframe is not guaranteed and it's very possible that the next-gen MBT will retain a three-man crew. Regardless, the ZTQ15 is a good indicator of the direction the PLA is taking with their new equipment.