13th Five-Year Plan Targets Exascale
After updating the continued supercomputing progress being made under the 12th five-year plan, Qian walked through brand-new elements of China’s 13th five-year plan, which puts into motion one of the most ambitious exascale programs in the world. If successful the program will stand up an exaflops (peak) supercomputer by the end of 2020 within a 35 MW power limit.
China is in the midst of overhauling its national research system and restructuring 100 programs into five tracks: Basic research program; mega-research program; key research and development program; enterprise-oriented research program; research centers and talents program.
The new track that is being focused on in the session is the third one – the key research and development program. A proposal for the track-3 key project on HPC was submitted in September 2015 and launched on February 2016.
The primary pillars for the key project are developing exascale computers, promoting computer industry by technology transfer and a China-controlled HPC technology set. The major tasks are next-generation supercomputing development, CNGrid upgrading and transformation, and domain HPC applications development. A robust supercomputing program is seen as a critical for addressing grand challenge problems spanning the environment, energy, climate, medicine, industry and science.
According to Professor Qian, the number one priority task is the development of an exascale supercomputer, based on a multi-objective optimized architecture that balances performance, energy consumption programmability, reliability and cost.
To achieve this goal, China is funding research into novel high performance interconnects with 3-D chip packaging, silicon photonics and on-chip networks. Programming models for heterogeneous computers will emphasize ease in writing programs and exploitation of performance of the heterogeneous architectures.
The program includes the development of prototype systems for verification of the exascale computer technologies. The computer scientists will explore possible exascale computer architectures, interconnects which can support more than 10,000 nodes, and energy efficiency technologies, as power demand is known to be one of the biggest obstacles toward exascale.
The exascale prototype will be about 512 nodes, offering 5-10 teraflops-per-node, 10-20 Gflops/watt, point to point bandwidth greater than 200 Gbps. MPI latency should be less than 1.5 us, said Qian. Development will also include system software and three typical applications that will be used to verify effectiveness.
From there, work will begin on an energy-efficient computing node and a scheme for high-performance processor/accelerator design.
“Based on those key technology developments, we will finally build the exascale system,” said Qian. “Our goal is not so ambitious – it is to have exaflops in peak. We are looking for a LINPACK efficiency of greater than 60 percent. Memory is rather limited, about 10 petabytes, with exabyte levels of storage.
“We don’t think we can reach the 20 megawatts system goal in less than five years so our goal is about 35 megawatts for the system; that means 30 Gflops/watt energy efficiency. The expected interconnect performance is greater than 500 Gbps.”
The final goal of the exascale program is technology transfer. Qian said that China will work to field high-end domain-oriented servers based on exascale system technologies. These servers will take advantage of the advances at the node, the interconnect, scalable I/O, storage, energy savings, reliability and application software.
The professor also spoke at length about China’s software strategies.”We cannot distinguish key technologies from applications, so there will be a joint effort in this direction.” Demo applications span a numerical nuclear reactor, a numerical aircraft, a numerical earth and a numerical engine.
The plan is to transfer some of the software into products to be adopted by a minimum of 50 users. To support this effort, China will establish three national-level research and development centers for HPC application software.
The professor emphasized that China’s “self-control” strategy to eliminate dependence on foreign tech doesn’t just refer to the processor and other hardware. “One of the efforts reflected in our plan is to develop parallel algorithms and parallel libraries for the system to improve the capability of developing modern-scale systems,” he said.
The final new element of China’s renovated program is the development of a platform for education that will provide computing resources and service to undergraduate and graduate students.
A call for proposals for the new key project was issued on February 19, 2016. The proposals will be reviewed over the next two months and then the selected projects will be announced.