A Chinese Long March 3B Rocket blasted off from the Xichang Satellite Launch Center on Monday, lifting the Gaofen-4 satellite into orbit to have a watchful eye on Planet Earth, becoming China’s first remote sensing satellite operated from Geosynchronous Orbit. Closing out a year that saw 87 orbital space launches, Long March 3B lifted off at 16:04 UTC to perform a standard ascent mission lasting a little under half an hour to drop the satellite off in a highly elliptical transfer orbit. An announcement confirming launch success came forward later in the day via official Chinese media.
With Monday’s successful launch, China is overtaking the United States in the number of successful orbital launches carried out in 2015 with 19 fully successful missions, marking another perfect year for Chinese orbital spaceflight. While conducting 20 launches this year, American rockets suffered a pair of failures – a Falcon 9 disintegrated in the skies over Cape Canaveral shortly after lifting off with the Dragon CRS-7 cargo craft in June and the inaugural launch of the Super Strypi small-satellite launcher failed in November about one minute after blasting off from Hawaii.
Russia remains in the lead in 2015 with 29 orbital launches and 26 successes, maintaining its leading position for over a decade, though going through a bit of an up and down in 2015 as both of Russia’s workhorse launchers, Soyuz and Proton, had to deal with failures over the course of the year. European rockets flew nine times this year while India conducted five successful orbital launches and Japanese rockets made four flights, including the country’s first fully commercial mission. Iran conducted a single orbital mission in 2015 bringing the year’s total to 87 missions with five failures, trailing last-year’s 92 launches that set a record for the current century.
...
Gaofen-4 stands out within the CHEOS program as it marks the first time China deploys a Remote Sensing satellite to Geostationary Orbit from where it can deliver around-the-clock imagery of areas in China and surrounding territories. The 4,600-Kilogram satellite makes use of a hexagonal platform with two two-panel solar arrays for power generation and a large optical baffle on its Earth-facing deck.
The Gaofen-4 satellite is outfitted with a staring imager hosting a common optical system focusing light on a visible and infrared detector system. The staring camera has to be pointed to the desired location on Earth and can capture frames around 400 x 400 Kilometers in size. A ground resolution of 50 meters is achieved in the visible wavelengths while the infrared imager reaches a resolution better than 400 meters – realizing a resolution better than current staring imagers deployed to Geostationary Orbit. Being sensitive for infrared wavelengths permits the satellite to complete nighttime imaging operations.
The primary driver of the Gaofen-4 mission is the acquisition of imagery at extremely high temporal resolution, essentially only limited by the time needed to slew the satellite between different targets and downlink data rates/latency. Multi-band imagery delivered by the spacecraft will be used in various applications including disaster monitoring, meteorological observations, environmental monitoring, agricultural planning and national security. The satellite will be employed in the detection of hot spots, to deliver warnings for major weather conditions such as local areas of strong convections and typhoons.
Likely to be stationed at 110 to 112°E, areas covered by the satellite include the entire Chinese Territory, the Asia-Pacific Region including Australia, and entire Indian Subcontinent and surrounding regions as well as Kazakhstan and portions of Russia...