I'm going to put all the interesting articles regards to advancements of materials sciences in China on this thread. I'll start with this article on Friction Stir Welding.
Friction stir welding of aluminium ships
Fred Delany, Stephan W Kallee, Mike J Russell
TWI China, Baliqiaobei Chaoyang District, P O Box 863, 100024 Beijing, P.R. China
Tel: +86 (0)10 8570 3255, [email protected]
(excerpts)
Paper presented at 2007 International Forum on Welding Technologies in the Shipping Industry (IFWT) Held in conjunction with the Beijing Essen Welding and Cutting Fair in Shanghai, 16-19 June 2007
In friction stir welding (FSW), which has been invented and patented by TWI (References [1] and [2] ), a wear resistant rotating tool is used to join sheet and plate materials such as aluminium, magnesium and copper. In laboratory experiments, zinc, lead, titanium, nickel and steel have been friction stir welded. The welds are made below the melting point in the solid phase. The excellent mechanical properties and low distortion produced by FSW are attributed to the low heat input and smooth profile of the weld.
The relatively low temperatures generated during friction stir welding permit joining of thin aluminium skins of honeycomb or sandwich panels, avoiding delamination of skins and core. Low temperature FSW also permits a number of dissimilar material welds to be made.
Since the invention of friction stir welding at TWI in 1991, companies from all parts of the world have implemented the process, predominantly in the fabrication of aluminium components and panels. Trendsetters were the Scandinavian aluminium extruders, who were in 1995 the first to apply the process commercially for the manufacture of hollow aluminium deep-freeze panels, and for ship decks and bulkheads. Friction stir welded structures are now revolutionising the way in which high-speed ferries, hovercraft and cruise ships are built from prefabricated lightweight modules ( Fig 1&2).
In the shipbuilding industry several companies use the FSW process for the production of large aluminium panels, which are made from aluminium extrusions. Commercial FSW machines are now available and include complete installations to weld up to 16m lengths. Currently 171 organisations hold non-exclusive licences from TWI to use the process. Most of these licensees are industrial companies, who exploit the FSW process in commercial production in Japan, USA, China, Europe and Scandinavia."
"Batch production by FSW also reduces the welding workload in shipyards. Shipbuilding changes from manual fieldwork to standardised production lines. Production efficiency of shipbuilding is therefore greatly improved. And finally, the residual stresses of friction stir welded aluminium alloy panels are very low and distortion is very small. Parts of ships can therefore be assembled more accurately, and the precision of ship modules and the final shape of ships can be significantly improved. Nowadays, the concept of using prefabricated FSW panels for shipbuilding is popular at shipyards in Dalian, Shanghai, Wuhan, Guangxi and Guangzhou. These wide panels have successfully been used in many shipbuilding projects, including ships designed and fabricated in China for export to Vietnam and Micronesia ( Fig.25).
FSW used on Chinese aluminium alloy ships for various export markets Fig.25. FSW used on Chinese aluminium alloy ships for various export markets
The Type 022 Houbei Class is the Chinese People's Liberation Army Navy's new-generation stealth missile fast attack craft (FAC). The boat features a unique high-speed, wave-piercing catamaran hull with evident radar cross-section reduction design features ( Fig.26). A number of Chinese shipyards across the country have been involved in the construction of the boat and it has been reported that FSW aluminium alloy panels have been used to produce this very advanced navy vessel in China."
Friction stir welding of aluminium ships
Fred Delany, Stephan W Kallee, Mike J Russell
TWI China, Baliqiaobei Chaoyang District, P O Box 863, 100024 Beijing, P.R. China
Tel: +86 (0)10 8570 3255, [email protected]
(excerpts)
Paper presented at 2007 International Forum on Welding Technologies in the Shipping Industry (IFWT) Held in conjunction with the Beijing Essen Welding and Cutting Fair in Shanghai, 16-19 June 2007
In friction stir welding (FSW), which has been invented and patented by TWI (References [1] and [2] ), a wear resistant rotating tool is used to join sheet and plate materials such as aluminium, magnesium and copper. In laboratory experiments, zinc, lead, titanium, nickel and steel have been friction stir welded. The welds are made below the melting point in the solid phase. The excellent mechanical properties and low distortion produced by FSW are attributed to the low heat input and smooth profile of the weld.
The relatively low temperatures generated during friction stir welding permit joining of thin aluminium skins of honeycomb or sandwich panels, avoiding delamination of skins and core. Low temperature FSW also permits a number of dissimilar material welds to be made.
Since the invention of friction stir welding at TWI in 1991, companies from all parts of the world have implemented the process, predominantly in the fabrication of aluminium components and panels. Trendsetters were the Scandinavian aluminium extruders, who were in 1995 the first to apply the process commercially for the manufacture of hollow aluminium deep-freeze panels, and for ship decks and bulkheads. Friction stir welded structures are now revolutionising the way in which high-speed ferries, hovercraft and cruise ships are built from prefabricated lightweight modules ( Fig 1&2).
In the shipbuilding industry several companies use the FSW process for the production of large aluminium panels, which are made from aluminium extrusions. Commercial FSW machines are now available and include complete installations to weld up to 16m lengths. Currently 171 organisations hold non-exclusive licences from TWI to use the process. Most of these licensees are industrial companies, who exploit the FSW process in commercial production in Japan, USA, China, Europe and Scandinavia."
"Batch production by FSW also reduces the welding workload in shipyards. Shipbuilding changes from manual fieldwork to standardised production lines. Production efficiency of shipbuilding is therefore greatly improved. And finally, the residual stresses of friction stir welded aluminium alloy panels are very low and distortion is very small. Parts of ships can therefore be assembled more accurately, and the precision of ship modules and the final shape of ships can be significantly improved. Nowadays, the concept of using prefabricated FSW panels for shipbuilding is popular at shipyards in Dalian, Shanghai, Wuhan, Guangxi and Guangzhou. These wide panels have successfully been used in many shipbuilding projects, including ships designed and fabricated in China for export to Vietnam and Micronesia ( Fig.25).
FSW used on Chinese aluminium alloy ships for various export markets Fig.25. FSW used on Chinese aluminium alloy ships for various export markets
The Type 022 Houbei Class is the Chinese People's Liberation Army Navy's new-generation stealth missile fast attack craft (FAC). The boat features a unique high-speed, wave-piercing catamaran hull with evident radar cross-section reduction design features ( Fig.26). A number of Chinese shipyards across the country have been involved in the construction of the boat and it has been reported that FSW aluminium alloy panels have been used to produce this very advanced navy vessel in China."